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The recent increases of data generated, stored and analysed by 
insurers to establish their pricing and underwriting policies has 
led to the emergence of new needs—both from a regulatory 
point of view, with the recent implementation of the EU General 
Data Protection Regulation (GDPR), and with a view to offering 
new services on the market (e.g., protection against cyber risk).  

The work carried out in this paper is thus devoted to the 
development and analysis of actuarial methods within the 
default security framework—a principle of the GDPR imposed on 
companies using personal data.  

The objective is to extend the elementary mathematical 
concepts and models used when developing classical non-life 
insurance pricing models (simple linear regression and 
generalised linear models) to their use on secure data in 
accordance with regulatory requirements. 

Anonymisation and pseudonymisation 
concepts at the core of privacy 
The GDPR sets the practices insurers must respect with regard, 
among other things, to the data they have in their possession. In 
particular, we observe the 'principles of data protection from the 
design stage and security by default’1, which aim to clarify and 
formalise the constraints introduced, defining the concepts of 
anonymised and pseudonymised data.  

                                                
1 General Data Protection Regulation (2016), Art. 25. 

'Pseudonymisation' consists of making data partially 
anonymous. It may be difficult but it can still be traced back and 
attributed to an individual (Figure 1). 

FIGURE 1: DIAGRAM OF PSEUDOYMISATION PROCESS 

 

To achieve this, several methods exist, including secret key 
encryption methods (shown in Figure 2). We examined2 the 
possibility of performing a simple linear regression on 
pseudonymised data by encryption, without ever having to 
decipher it (see Figure 3). 

FIGURE 2: SECRET KEY ENCRYPTION PROCEDURE 

 

2 Poinsignon, T. (2018). Processus de tarification non-vie sur des 
données chiffrées et anonymisées. 
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FIGURE 3: PERFORMING A LINEAR REGRESSION ON PSEUDONYMISED 
DATA 

 

 

This method could find its place within the cloud-computing 
framework, by delivering a highly secure process to delegate 
computations and statistical analysis from an insurer, for 
instance to an external service provider. 

However, to be able to perform such calculations over cyphered 
data we had to use and implement singular encryption schemes. 
Such methods are said to be homomorphic because they allow 
us to define equivalent operators (∗𝟏,∗𝟐) respectively for + and 
× in the encrypted space, enabling computation of linear forms 
in this space while preserving consistency: 

�⃛� = �⃛� ∗𝟐 �⃛� ∗𝟏 𝒃, 	⟺ 	𝒚 = 𝒂× 𝒙+ 𝒃 

Where �⃛� is the encrypted value of any 𝜶 within the cypher 
space. 

Therefore, we focused on two schemes: first of all the Efficient 
Integer Vector Homomorphic Encryption scheme,3 which we 
implemented in Python and whose theoretical aspect has the 
main advantage of being relatively simple to handle. By applying 
this scheme to our moderate-sized data, and with some 
concessions on upstream data processing, we were able to 
perform our linear regression without decrypting the data during 
the process.  

However, these concessions seem us to be overly constraining 
in a concrete application framework (for example, the secure 
delegation of calculations from an insurer to an external service 
provider in cloud computing).This is why we decided to reiterate 
this methodology but using a more robust—and more complex—
encryption scheme in R, the Fan and Vercauteren scheme.4  

From this model, we were able to obtain results equivalent to the 
previous scheme (see the different estimations of Y according to 
the space in which the linear regression occurred, shown in 
Figure 4 below) but without having to make any changes to our 
data beforehand. To achieve this, we proceeded differently. With 
the Efficient Integer Vector Homomorphic Encryption scheme 
we  simply calculated the estimate of the coefficient vector of the 

                                                
3 Yu, A. et al. (2015). Efficient Integer Vector Homomorphic Encryption. 

regression 𝜷1 by the formula of ordinary least squares (𝜷1 =
(𝑿𝑻𝑿)6𝟏𝑿𝑻𝒀, with 𝒀		the response data vector and 𝑿 the 
covariate matrices) in the encrypted space. Here, with the Fan 
and Vercauteren scheme, we have chosen instead to obtain an 
estimate of 𝜷1	by performing a gradient descent (GD) in the 
encrypted space.  

Moreover, this gradient descent in the encrypted space 
converges well towards the value of 𝜷1 if the number of iterations 
is large enough. 

Nevertheless, the significant computation time induced by 
operations in the encrypted space, as well as the use of 'only' 
pseudonymised data (the GDPR remains restrictive on the use 
of such data and getting off these constraints requires 
anonymising the database), has led us to consider an alternative 
approach. 

FIGURE 4: RESULT OF LINEAR REGRESSION WITHIN DIFFERENT SPACE 

 

The significant computation time of operations in the encrypted 
space and its overall complexity led us to consider alternative 
methods based on anonymization, as recommended by the 
GDPR, for production purposes. 

 

While we previously looked at procedures that would allow an 
insurer to externalise its most heavy tasks to a service provider 
in complete security, we want to focus now instead on a local 
solution based on anonymisation, which should make non-life 
pricing more easily compliant with the GDPR. 

We decided, based on anonymised data, to establish a 
frequency/cost model for a motor insurance pricing and to 
compare the estimated premium amounts with those obtained 
using the same model but calibrated, in a usual way, on the 
individual policies in the portfolio (i.e., non-anonymised). 

Data is considered to be anonymized, according to the GDPR, if 
it is strictly impossible to identify individuals. It is therefore an 
irreversible and delicate procedure if we want to keep as much 
information as possible about our data after its anonymisation. 

4 Fan, J. & Vercauteren, F. (2012). Somewhat Practical Homomorphic 
Encryption. 
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FIGURE 5: DIAGRAM OF ANONYMISATION PROCESS 

 

 

One more constraint concerning an anonymisation procedure 
for the GDPR is the ability to ensure that none of the rows from 
the anonymised data set refer to any specific individual from the 
initial data. In other case, this should still be considered as a 
pseudonymised data set. 

Many different methods may be used to anonymise the data set, 
such as encrypting it and deleting the secret key, though this 
would make it impossible to use forever. Another common 
practice is based on adding noise to quantitative data or 
bucketising it. These last procedures are all generalisation-
focused ones. Even if they tend to work and respect the rules of 
an anonymisation process at first glance, everyone should be 
aware of the limits and sometimes risks they induce. 

AI-driven anonymisation beyond 
generalisation 
To highlight these limits and risks, let's look at the k-
anonymisation procedure, which is an anonymisation method 
based on generalisation that can be assimilated as a very global 
approach of the bucketisation. 

The idea with this procedure is to form groups of k observations 
that will share the same modalities for the explicit variables (the 
quasi-identifiers, which will be the primary key for the data set) 
within each set, in order to protect the sensible variable (see 
Figure 6). In order to achieve this, we may make changes to the 
modalities of either the explicit or sensible variables. 

But as easy—or at least as simple—as it seems, this procedure 
requires a lot of computations to ensure that the choice of the 
explicit variables and their new generalised modalities are 
optimal to guarantee the final anonymity of the data set. 

FIGURE 6: DIAGRAM OF K-ANONYMISATION PROCESS 

 

                                                
5 When all modalities for the sensitive variable are equivalent in a 
single group. 

In fact, in production one uses heuristics to find it in a decent 
amount of time. This approximation may lead to potential 
information leak as can be observed in Figure 6. Obviously in 
this case the green table in Figure 6 cannot be considered as 
anonymised as it is vulnerable to homogeneity attacks, where 
anyone would be able to know that a specific individual who is 
either an independent or between 35 and 44 had a very 
important crash because each observation of the third group 
shares the same modality for the sensible variable. Plus this 
table is also vulnerable to third-party attacks, so if one knows 
that any of the clients had an accident and is unemployed and 
25, you can be sure that he had medium damage. 

In order to impede these weaknesses from happening, multiple 
constraints can be added to the k-anonymisation, such as i-
diversity, which ensures that the sensible variable counts at least 
i different modalities between the k observation of each group 
(see Figure 7). 

FIGURE 7: I-DIVERSITY CONSTRAINT OVER K-ANONYMISATION 

 

 

However, this still can be vulnerable to homogeneity attacks5 (for 
instance, in Figure 7 one can deduce from the green table that 
any individual living in a 92*** region who is between 22 and 41 
had an accident). Furthermore, generalisation methods are 
finally all based on decorrelating explanatory variables (quasi-
identifiers) from the variable of interest (sensible variable). In our 
case, where we want to perform a frequency/cost model for a 
motor insurance pricing from the anonymised data set, this is 
definitely something we would like to limit. 

Therefore, we have been looking at an alternative 
anonymisation methodology which would verify those 
constraints. Coming from the idea of the generalisation methods 
consisting in grouping observations (or policies in our case) from 
a horizontal point of view (by aggregating variables and 
modalities, etc.), we thought of a vertical approach based on 
line-by-line aggregation (see Figure 8), which will both enforce 
the guarantee of the anonymisation process and also the 
remaining variance in the final data set, thanks to a clustering 
algorithm. 
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FIGURE 8: DIAGRAM OF LINE-BY-LINE AGGREGATION ANONYMISATION 

 

 

Basically, we start by performing an unsupervised machine 
learning algorithm on our initial data set in order to cluster the 
data into n groups. Then for each cluster we compute a single 
pseudo-observation, which is an average of the observations 
(policies) of the group (for each quantitative variable we take the 
mean of the rows, while for the qualitative variables we consider 
the most represented modality). Finally the n pseudo-
observations constitute the anonymised data set needed. 

The obtained data set is then securely anonymised according to 
the GDPR, as every row is representative of at least two 
observations (policies) from the initial data set but it is impossible 
to exactly know which ones, while not any row is specific to a 
singular observation from the plain data set. 

 

A vertical approach based on line-by-line aggregation which will 
both enforce the guarantee of the anonymisation process and 
also the remaining variance, thanks to a clustering algorithm. 

 
Once we have defined our methodology to anonymise our data, 
we need to precisely set the framework of the anonymised 
pricing procedure we intend to perform. 

The data we used to realise our motor insurance pricing comes 
from a pricing game session (100% Actuaires 2015), which we 
classically split into two samples, one for a training purpose 
(60% of the whole data) and the other for testing. Then the 
methodology we implement will allow us to compare for a single 
model the impact of its anonymisation. 

In fact, we will start by establishing a single frequency/cost 
generalised linear model (GLM) and then, on one hand, training 
and testing the model line by line like one would usually do 
(benchmark model), while on the other hand, training the model 
from the anonymised learning sample and then testing it on the 
test sample—line by line to be coherent in a production case 
(anonymised model). Finally we compare and look at the 
deviation between the claims amount estimated through the 
benchmark and the anonymised models, having as objective to 
obviously get both as close as possible. 

Whereas our approach for anonymisation is driven by artificial 
intelligence (AI), we had to test several different machine 
learning algorithms to find the one(s) that would suit the best our 

pricing model among k-means clustering, hierarchical clustering, 
density-based clustering (OPTICS), affinity propagation, etc.  

We observe that our benchmark model based on a negative 
binomial distribution (with log as link function) for frequency 
estimation and on a negative gaussian (with inverse as link 
function) for averaged cost, provides quite accurate results while 
slightly overestimating the overall pricing over the test sample. 
Then, from the whole pool of clustering algorithms we tested, 
two methods turn out to give some interesting results compared 
to the benchmark estimations. First, using a k-means algorithm 
(with k = 6,000) to cluster the learning sample prior to the 
pseudo-observations computations leads to a relative deviation 
(on average) of the estimated costs between the anonymised 
model and the benchmark model of only 4.56%, which can easily 
be seen graphically in Figure 9 as the points here are quite close 
to y = x. 

FIGURE 9: COMPARISON MODELS USING K-MEANS ALGORITHM 

 

While using a k-means algorithm allows it to perform well on 
average (for estimating pricing of the whole portfolio), using a 
density base clustering such as OPTICS provides more accurate 
estimation indivdually, as Figure 10 suggests. 

From this histogram, one can see that, using an OPTICS 
algorithm, about 60% of the test base has an individual deviation 
between the benchmark model and anonymised model of less 
than 15%. 

FIGURE 10: RELATIVE DEVIATION DISTRIBUTION, OPTICS 

 

Although depending on the algorithms we chose they can 
produce decent results, we should still try to determine what is 
driving the pricing deviation between the models, notably to be 
able to apply corrections to the most badly predictive estimations 
from the anonymised model so they get closer to the benchmark 
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results. To do this, one should simply have a look at variables 
modalities distribution from the test sample according to the 
measured deviation. In the example in Figure 11, we can for 
instance very clearly see that retired insurees are way more 
likely to see their premiums overestimated through the 
anonymised model than the others. Obviously, you should also 
look at more variables to refine the corrective analysis. 

These methods also reflect the emergence of new needs, 
particularly related to cyber risk, which is currently the focus of 
particular attention in the insurance sector. 

 
FIGURE 11: ANALYSIS OF DEVIATION, DRIVER OCCUPATION 

 

We presented here a working AI-driven anonymisation 
methodology to develop an anonymised motor insurance pricing 
procedure based on GLM statistical modelisation. However, 
more and more pricings are now also based upon other 
techniques like decision tree methods — Classification and 
Regression Tree (CART), random forest, etc. — and applying 
such anonymisation straight away will not give expected results. 
In such case one should consider tweaking the method to try to 
preserve even more variance in the anonymised data set, for 

instance by computing more pseudo-observations after the 
clustering phase (see Figure 12). For instance with this 
alternative methodology, we achieved to greatly reduce the 
pricing deviation for a tree based model (CART). 

FIGURE 12: ALTERNATIVE TO PRESERVE MORE VARIANCE 
 

 

In addition, these methods also find their place in the emergence 
of new needs, in particular cyber risk, which is currently the 
subject of attention by insurers 

 
The challenge of maintaining data privacy is a recent technical 
issue highlighted by the advent of Big Data but also by the 
regulatory changes brought about by the GDPR in particular. 
The techniques presented here are avenues for consideration to 
take these constraints into account in the establishment of 
traditional actuarial techniques such as pricing issues, via a 
delegation of the insurer's calculations by encrypted cloud 
computing (pseudonymisation), but also locally with the insurer's 
facilities via an anonymised pricing technique.  

Finally, as a research subject we are constantly working on 
developing new solutions to improve our methodologies and to 
be able to support as many pricing approaches as necessary in 
the future to easily build effective actuarial models within privacy 
standards.
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